EpiBench Analysis: Detailed Process Guide
A comprehensive guide to the analysis process with EpiBench. Last updated: 2024-11-22
Analysis Overview
EpiBench provides a systematic approach to epigenetic data analysis. This guide outlines each step in detail, from data preparation to result interpretation.
Stage 1: Data Processing and Preparation
Genomic Sequence Processing
# Load genomic sequences
from epibench.data import SequenceLoader
sequence_loader = SequenceLoader(
reference_genome="path/to/genome.fa",
context_size=1000
)
sequences = sequence_loader.load_from_bed("regions.bed")
Epigenetic Data Integration
# Load histone data
from epibench.data import HistoneLoader
histone_loader = HistoneLoader()
histone_data = histone_loader.load_multiple_marks({
"H3K4me3": "h3k4me3.bw",
"H3K27ac": "h3k27ac.bw"
})
# Data integration
from epibench.data import DataIntegrator
integrator = DataIntegrator()
integrated_data = integrator.combine(
sequences=sequences,
histone_data=histone_data
)
Stage 2: Feature Engineering
# Extract sequence features
from epibench.features import SequenceFeatureExtractor
extractor = SequenceFeatureExtractor()
sequence_features = extractor.one_hot_encode(sequences)
# Process histone features
from epibench.features import HistoneProcessor
processor = HistoneProcessor()
histone_features = processor.normalize(histone_data)
Stage 3: Model Construction and Training
Model Architecture
# Define neural network model
from epibench.models import MultibranchCNN
model = MultibranchCNN(
sequence_length=1000,
n_histone_marks=2,
kernel_sizes=[3, 9, 27],
dropout_rate=0.3
)
# Configure training
model.configure_training(
learning_rate=0.001,
batch_size=64,
n_epochs=100
)
Training Process
# Split data
train_data, val_data, test_data = integrator.train_val_test_split(
integrated_data,
train_ratio=0.7,
val_ratio=0.15,
test_ratio=0.15
)
# Train model
history = model.train(
train_data=train_data,
val_data=val_data,
save_best=True
)
Stage 4: Evaluation and Interpretation
Performance Assessment
# Evaluate model
metrics = model.evaluate(test_data)
print(f"Test accuracy: {metrics['accuracy']:.4f}")
print(f"Test AUC: {metrics['auc']:.4f}")
# Generate predictions
predictions = model.predict(test_data)
Model Interpretation
# Interpret predictions
from epibench.interpret import IntegratedGradients
explainer = IntegratedGradients(model)
attributions = explainer.explain(test_data[0])
# Visualize results
from epibench.visualization import AttributionPlot
plotter = AttributionPlot()
plotter.sequence_attribution(
sequence=test_data[0].sequence,
attributions=attributions.sequence
)
Stage 5: Result Reporting
# Generate comprehensive report
from epibench.reporting import HTMLReport
report = HTMLReport(
title="Epigenetic Analysis Report",
author="Your Name"
)
report.add_metrics(metrics)
report.add_figures([
"attribution_plot.png",
"performance_metrics.png"
])
report.generate("analysis_report.html")
Alternative Analysis Approaches
Classification Analysis
For classification instead of regression:
# Configure for classification
model = MultibranchCNN(
sequence_length=1000,
n_histone_marks=2,
task="classification",
n_classes=2
)
Transfer Learning
To leverage pre-trained models:
# Load pre-trained model
from epibench.models import load_model
pretrained = load_model("pretrained_model.pt")
pretrained.freeze_feature_layers()
# Fine-tune
pretrained.train(
train_data=new_data,
learning_rate=0.0001, # Lower learning rate for fine-tuning
n_epochs=20
)
Best Practices
-
Data Quality
- Verify genomic coordinate consistency
- Check for batch effects in histone data
- Normalize signals appropriately
-
Model Selection
- Start with simpler models as baselines
- Adjust architecture based on data complexity
- Use cross-validation for hyperparameter tuning
-
Results Interpretation
- Compare with known biological mechanisms
- Validate patterns across multiple samples
- Consider the biological context of predictions
-
Computational Efficiency
- Use appropriate batch sizes
- Leverage GPU acceleration when available
- Cache intermediate results for large datasets
For technical setup details, see the Technical Requirements page. For a practical example, check the AML Case Study.